Main Article Content
Abstract
This study aims to evaluate the performance of Bulog's rice supply chain in Bogor, focusing on two product categories: premium rice and medium rice under the SPHP program. The objective is to identify strengths and gaps in operational performance across key supply chain metrics and provide actionable insights for future improvement. A mixed-methods approach was used, combining qualitative interviews with supply chain stakeholders and quantitative analysis using the SCOR-AHP (Supply Chain Operations Reference – Analytical Hierarchy Process) framework. Performance indicators, such as Perfect Order Fulfillment (POF) and Upside Supply Chain Adaptability (USCA), were analyzed using benchmark comparisons and priority weight calculations. The overall performance of Bulog's rice supply chain in 2024 was rated very good. Premium rice achieved a performance score of 95.31%, while medium rice (SPHP) scored 86.61%. However, medium rice showed notable weaknesses in POF (72.5%) and USCA (46.67%), indicating challenges in order fulfillment precision and responsiveness to sudden demand increases. In contrast, premium rice performed better in these areas, with a POF of 96.55% and a USCA rating of 71.43%. The findings highlight areas for operational refinement, particularly in improving adaptability and delivery accuracy. These insights are valuable for supply chain practitioners and policymakers seeking to enhance national food distribution systems.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abolghasemi, M., Rostami-Tabar, B., & Syntetos, A. (2023). The value of point of sales information in upstream supply chain forecasting: an empirical investigation. International Journal of Production Research, 61(7), 2162–2177. https://doi.org/10.48550/arXiv.2201.10555
- Agarwal, A. (2018). Validation of Inventory Models for Single-Echelon Supply Chain using Discrete-Event Simulation. ArXiv Preprint ArXiv:1806.07427. https://doi.org/10.48550/arXiv.1806.07427
- Becker, T. (2025). Supply Chain Management BT - Strategic Design and Digitalisation of the Supply Chain: Achieving Competitive Advantage with the Digital Supply Chain (T. Becker (ed.); pp. 5–27). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-69752-8_2
- Chowdhury, M. M. H., & Quaddus, M. (2017). Supply chain resilience: Conceptualization and scale development using dynamic capability theory. International Journal of Production Economics, 188, 185–204. https://doi.org/https://doi.org/10.1016/j.ijpe.2017.03.020
- Christopher, M. (2016). Logistics and Supply Chain Management: Logistics & Supply Chain Management. Pearson UK.
- Djama, A., Indriani, R., & Moonti, A. (2023). Optimalisasi Manajemen Rantai Pasok Beras Dalam Menjaga Ketahanan Pangan (Studi Kasus Perum Bulog Kantor Cabang Gorontalo). Media Agribisnis, 7(1), 107–115. https://doi.org/10.35326/agribisnis.v7i1.3199
- Fathurrohman, Y. E., & Pambudi, R. (2020). Analisis Penyimpanan Beras melalui Perum Bulog Sub Divre Pekalongan terhadap Kestabilan Harga. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 22(1). https://doi.org/10.30595/agritech.v22i1.7540
- Hilda Anugrah, P., Sutrisno, J., Marwanti, S., Amalia Nadifta, U., & Indah, N. (2023). Analysis of Rice Supply Chain Management Related to Performance and Sustainability of Food Security Program in Central Java. Universal Journal of Agricultural Research, 11(3), 525–536. https://doi.org/10.13189/ujar.2023.110303
- Ivanov, D., & and Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1768450
- Kamalahmadi, M., & Parast, M. M. (2017). An assessment of supply chain disruption mitigation strategies. International Journal of Production Economics, 184, 210–230. https://doi.org/https://doi.org/10.1016/j.ijpe.2016.12.011
- Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/https://doi.org/10.1016/j.psep.2018.05.009
- Malesios, C., Dey, P. K., & Abdelaziz, F. Ben. (2020). Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling. Annals of Operations Research, 294(1), 623–653. https://doi.org/10.1007/s10479-018-3080-z
- Merschformann, M., Lamballais, T., de Koster, M. B. M., & Suhl, L. (2019). Decision rules for robotic mobile fulfillment systems. Operations Research Perspectives, 6, 100128. https://doi.org/https://doi.org/10.1016/j.orp.2019.100128
- Mishra, D., Gunasekaran, A., Papadopoulos, T., & Dubey, R. (2018). Supply chain performance measures and metrics: a bibliometric study. Benchmarking: An International Journal, 25(3), 932–967. https://doi.org/10.1108/BIJ-08-2017-0224
- Neubert, G., Ouzrout, Y., & Bouras, A. (2004). Collaboration and integration through information technologies in supply chains. International Journal of Technology Management, 28(2), 259–273. https://doi.org/10.48550/arXiv.1811.01688
- Norita, D., & Munita, R. R. D. S. A. E. N. A. A. (2024). Rice supply chain performance measurement model using supply chain operational reference and data envelopment analysis methods at PT XYZ. Eng. Technol. J, 9(07). https://doi.org/10.47191/etj/v9i07.08
- Novar, M. F., Ridwan, A. Y., & Santosa, B. (2018). SCOR and ahp based monitoring dashboard to measure rice sourcing performance at Indonesian bureau of logistics. 2018 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 1–6. https://doi.org/10.1109/TSSA.2018.8708814
- Panayides, P., Borch, O. J., & Henk, A. (2018). Measurement challenges of supply chain performance in complex shipping environments. Maritime Business Review, 3(4), 431–448. https://doi.org/10.1108/MABR-07-2018-0021
- Pansart, L., Catusse, N., & Cambazard, H. (2018). Exact algorithms for the order picking problem. Computers & Operations Research, 100, 117–127. https://doi.org/https://doi.org/10.1016/j.cor.2018.07.002
- Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The evolution of resilience in supply chain management: a retrospective on ensuring supply chain resilience. Journal of Business Logistics, 40(1), 56–65. https://doi.org/10.1111/jbl.12202
- Rehman, S. T., Khan, S. A., Kusi-Sarpong, S., & Hassan, S. M. (2018). Supply chain performance measurement and improvement system. Journal of Modelling in Management, 13(3), 522–549. https://doi.org/10.1108/JM2-02-2018-0012
- Scholten, K., Sharkey Scott, P., & Fynes, B. (2019). Building routines for non-routine events: supply chain resilience learning mechanisms and their antecedents. Supply Chain Management: An International Journal, 24(3), 430–442. https://doi.org/10.1108/SCM-05-2018-0186
- Septya, F., Andriani, Y., Pebrian, S., Yulida, R., & Rosnita, R. (2024). SUPPLY CHAIN ANALYSIS OF RICE MARKETING ACTORS IN DUMAI CITY IN SUPPORTING URBAN FOOD SECURITY. Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, 8(1), 310–321. https://doi.org/10.14710/agrisocionomics.v8i1.19791
- Stadtler, H., Stadtler, H., Kilger, C., Kilger, C., Meyr, H., & Meyr, H. (2015). Supply chain management and advanced planning: concepts, models, software, and case studies. Springer. https://doi.org/10.1007/978-3-642-55309-7
- Stohler, M., Rebs, T., & Brandenburg, M. (2018). Toward the Integration of Sustainability Metrics into the Supply Chain Operations Reference (SCOR) Model BT - Social and Environmental Dimensions of Organizations and Supply Chains: Tradeoffs and Synergies (M. Brandenburg, G. J. Hahn, & T. Rebs (eds.); pp. 49–60). Springer International Publishing. https://doi.org/10.1007/978-3-319-59587-0_4
- Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/https://doi.org/10.1016/j.promfg.2017.09.191
- Wieland, A., & Durach, C. F. (2021). Two perspectives on supply chain resilience. In Journal of Business Logistics (Vol. 42, Issue 3, pp. 315–322). Wiley Online Library. https://doi.org/10.1111/jbl.12271
- Wijaya, A. (2024). Peningkatan Kinerja dan Perlakuan Risiko Rantai Pasok Beras Cadangan Pangan Pemerintah (Studi Kasus pada Perum BULOG, Kantor Wilayah Jawa Barat). JURNAL PANGAN, 33(3), 97–118. https://doi.org/10.33964/jp.v33i3.881
- Xie, Y., Yin, Y., Xue, W., Shi, H., & Chong, D. (2020). Intelligent supply chain performance measurement in Industry 4.0. Systems Research and Behavioral Science, 37(4), 711–718. https://doi.org/10.1002/sres.2712
- Yusuf, Y. Y., Gunasekaran, A., Adeleye, E. O., & Sivayoganathan, K. (2004). Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research, 159(2), 379–392. https://doi.org/https://doi.org/10.1016/j.ejor.2003.08.022
References
Abolghasemi, M., Rostami-Tabar, B., & Syntetos, A. (2023). The value of point of sales information in upstream supply chain forecasting: an empirical investigation. International Journal of Production Research, 61(7), 2162–2177. https://doi.org/10.48550/arXiv.2201.10555
Agarwal, A. (2018). Validation of Inventory Models for Single-Echelon Supply Chain using Discrete-Event Simulation. ArXiv Preprint ArXiv:1806.07427. https://doi.org/10.48550/arXiv.1806.07427
Becker, T. (2025). Supply Chain Management BT - Strategic Design and Digitalisation of the Supply Chain: Achieving Competitive Advantage with the Digital Supply Chain (T. Becker (ed.); pp. 5–27). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-69752-8_2
Chowdhury, M. M. H., & Quaddus, M. (2017). Supply chain resilience: Conceptualization and scale development using dynamic capability theory. International Journal of Production Economics, 188, 185–204. https://doi.org/https://doi.org/10.1016/j.ijpe.2017.03.020
Christopher, M. (2016). Logistics and Supply Chain Management: Logistics & Supply Chain Management. Pearson UK.
Djama, A., Indriani, R., & Moonti, A. (2023). Optimalisasi Manajemen Rantai Pasok Beras Dalam Menjaga Ketahanan Pangan (Studi Kasus Perum Bulog Kantor Cabang Gorontalo). Media Agribisnis, 7(1), 107–115. https://doi.org/10.35326/agribisnis.v7i1.3199
Fathurrohman, Y. E., & Pambudi, R. (2020). Analisis Penyimpanan Beras melalui Perum Bulog Sub Divre Pekalongan terhadap Kestabilan Harga. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 22(1). https://doi.org/10.30595/agritech.v22i1.7540
Hilda Anugrah, P., Sutrisno, J., Marwanti, S., Amalia Nadifta, U., & Indah, N. (2023). Analysis of Rice Supply Chain Management Related to Performance and Sustainability of Food Security Program in Central Java. Universal Journal of Agricultural Research, 11(3), 525–536. https://doi.org/10.13189/ujar.2023.110303
Ivanov, D., & and Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1768450
Kamalahmadi, M., & Parast, M. M. (2017). An assessment of supply chain disruption mitigation strategies. International Journal of Production Economics, 184, 210–230. https://doi.org/https://doi.org/10.1016/j.ijpe.2016.12.011
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/https://doi.org/10.1016/j.psep.2018.05.009
Malesios, C., Dey, P. K., & Abdelaziz, F. Ben. (2020). Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling. Annals of Operations Research, 294(1), 623–653. https://doi.org/10.1007/s10479-018-3080-z
Merschformann, M., Lamballais, T., de Koster, M. B. M., & Suhl, L. (2019). Decision rules for robotic mobile fulfillment systems. Operations Research Perspectives, 6, 100128. https://doi.org/https://doi.org/10.1016/j.orp.2019.100128
Mishra, D., Gunasekaran, A., Papadopoulos, T., & Dubey, R. (2018). Supply chain performance measures and metrics: a bibliometric study. Benchmarking: An International Journal, 25(3), 932–967. https://doi.org/10.1108/BIJ-08-2017-0224
Neubert, G., Ouzrout, Y., & Bouras, A. (2004). Collaboration and integration through information technologies in supply chains. International Journal of Technology Management, 28(2), 259–273. https://doi.org/10.48550/arXiv.1811.01688
Norita, D., & Munita, R. R. D. S. A. E. N. A. A. (2024). Rice supply chain performance measurement model using supply chain operational reference and data envelopment analysis methods at PT XYZ. Eng. Technol. J, 9(07). https://doi.org/10.47191/etj/v9i07.08
Novar, M. F., Ridwan, A. Y., & Santosa, B. (2018). SCOR and ahp based monitoring dashboard to measure rice sourcing performance at Indonesian bureau of logistics. 2018 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 1–6. https://doi.org/10.1109/TSSA.2018.8708814
Panayides, P., Borch, O. J., & Henk, A. (2018). Measurement challenges of supply chain performance in complex shipping environments. Maritime Business Review, 3(4), 431–448. https://doi.org/10.1108/MABR-07-2018-0021
Pansart, L., Catusse, N., & Cambazard, H. (2018). Exact algorithms for the order picking problem. Computers & Operations Research, 100, 117–127. https://doi.org/https://doi.org/10.1016/j.cor.2018.07.002
Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The evolution of resilience in supply chain management: a retrospective on ensuring supply chain resilience. Journal of Business Logistics, 40(1), 56–65. https://doi.org/10.1111/jbl.12202
Rehman, S. T., Khan, S. A., Kusi-Sarpong, S., & Hassan, S. M. (2018). Supply chain performance measurement and improvement system. Journal of Modelling in Management, 13(3), 522–549. https://doi.org/10.1108/JM2-02-2018-0012
Scholten, K., Sharkey Scott, P., & Fynes, B. (2019). Building routines for non-routine events: supply chain resilience learning mechanisms and their antecedents. Supply Chain Management: An International Journal, 24(3), 430–442. https://doi.org/10.1108/SCM-05-2018-0186
Septya, F., Andriani, Y., Pebrian, S., Yulida, R., & Rosnita, R. (2024). SUPPLY CHAIN ANALYSIS OF RICE MARKETING ACTORS IN DUMAI CITY IN SUPPORTING URBAN FOOD SECURITY. Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, 8(1), 310–321. https://doi.org/10.14710/agrisocionomics.v8i1.19791
Stadtler, H., Stadtler, H., Kilger, C., Kilger, C., Meyr, H., & Meyr, H. (2015). Supply chain management and advanced planning: concepts, models, software, and case studies. Springer. https://doi.org/10.1007/978-3-642-55309-7
Stohler, M., Rebs, T., & Brandenburg, M. (2018). Toward the Integration of Sustainability Metrics into the Supply Chain Operations Reference (SCOR) Model BT - Social and Environmental Dimensions of Organizations and Supply Chains: Tradeoffs and Synergies (M. Brandenburg, G. J. Hahn, & T. Rebs (eds.); pp. 49–60). Springer International Publishing. https://doi.org/10.1007/978-3-319-59587-0_4
Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/https://doi.org/10.1016/j.promfg.2017.09.191
Wieland, A., & Durach, C. F. (2021). Two perspectives on supply chain resilience. In Journal of Business Logistics (Vol. 42, Issue 3, pp. 315–322). Wiley Online Library. https://doi.org/10.1111/jbl.12271
Wijaya, A. (2024). Peningkatan Kinerja dan Perlakuan Risiko Rantai Pasok Beras Cadangan Pangan Pemerintah (Studi Kasus pada Perum BULOG, Kantor Wilayah Jawa Barat). JURNAL PANGAN, 33(3), 97–118. https://doi.org/10.33964/jp.v33i3.881
Xie, Y., Yin, Y., Xue, W., Shi, H., & Chong, D. (2020). Intelligent supply chain performance measurement in Industry 4.0. Systems Research and Behavioral Science, 37(4), 711–718. https://doi.org/10.1002/sres.2712
Yusuf, Y. Y., Gunasekaran, A., Adeleye, E. O., & Sivayoganathan, K. (2004). Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research, 159(2), 379–392. https://doi.org/https://doi.org/10.1016/j.ejor.2003.08.022