Main Article Content

Abstract

This study aims to evaluate the performance of Bulog's rice supply chain in Bogor, focusing on two product categories: premium rice and medium rice under the SPHP program. The objective is to identify strengths and gaps in operational performance across key supply chain metrics and provide actionable insights for future improvement. A mixed-methods approach was used, combining qualitative interviews with supply chain stakeholders and quantitative analysis using the SCOR-AHP (Supply Chain Operations Reference – Analytical Hierarchy Process) framework. Performance indicators, such as Perfect Order Fulfillment (POF) and Upside Supply Chain Adaptability (USCA), were analyzed using benchmark comparisons and priority weight calculations. The overall performance of Bulog's rice supply chain in 2024 was rated very good. Premium rice achieved a performance score of 95.31%, while medium rice (SPHP) scored 86.61%. However, medium rice showed notable weaknesses in POF (72.5%) and USCA (46.67%), indicating challenges in order fulfillment precision and responsiveness to sudden demand increases. In contrast, premium rice performed better in these areas, with a POF of 96.55% and a USCA rating of 71.43%. The findings highlight areas for operational refinement, particularly in improving adaptability and delivery accuracy. These insights are valuable for supply chain practitioners and policymakers seeking to enhance national food distribution systems.

Keywords

Rice Supply Chain Premium and Medium Rice (SPHP) Perfect Order Fulfillment (POF) Upside Supply Chain Adaptability

Article Details

How to Cite
Juliawan, D., Syarief, R., & Findi, M. . (2025). Performance Analysis of Premium and Medium Rice Supply Chain of Bulog in Bogor. Amkop Management Accounting Review (AMAR), 5(1), 148–165. https://doi.org/10.37531/amar.v5i1.2447

References

  1. Abolghasemi, M., Rostami-Tabar, B., & Syntetos, A. (2023). The value of point of sales information in upstream supply chain forecasting: an empirical investigation. International Journal of Production Research, 61(7), 2162–2177. https://doi.org/10.48550/arXiv.2201.10555
  2. Agarwal, A. (2018). Validation of Inventory Models for Single-Echelon Supply Chain using Discrete-Event Simulation. ArXiv Preprint ArXiv:1806.07427. https://doi.org/10.48550/arXiv.1806.07427
  3. Becker, T. (2025). Supply Chain Management BT - Strategic Design and Digitalisation of the Supply Chain: Achieving Competitive Advantage with the Digital Supply Chain (T. Becker (ed.); pp. 5–27). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-69752-8_2
  4. Chowdhury, M. M. H., & Quaddus, M. (2017). Supply chain resilience: Conceptualization and scale development using dynamic capability theory. International Journal of Production Economics, 188, 185–204. https://doi.org/https://doi.org/10.1016/j.ijpe.2017.03.020
  5. Christopher, M. (2016). Logistics and Supply Chain Management: Logistics & Supply Chain Management. Pearson UK.
  6. Djama, A., Indriani, R., & Moonti, A. (2023). Optimalisasi Manajemen Rantai Pasok Beras Dalam Menjaga Ketahanan Pangan (Studi Kasus Perum Bulog Kantor Cabang Gorontalo). Media Agribisnis, 7(1), 107–115. https://doi.org/10.35326/agribisnis.v7i1.3199
  7. Fathurrohman, Y. E., & Pambudi, R. (2020). Analisis Penyimpanan Beras melalui Perum Bulog Sub Divre Pekalongan terhadap Kestabilan Harga. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 22(1). https://doi.org/10.30595/agritech.v22i1.7540
  8. Hilda Anugrah, P., Sutrisno, J., Marwanti, S., Amalia Nadifta, U., & Indah, N. (2023). Analysis of Rice Supply Chain Management Related to Performance and Sustainability of Food Security Program in Central Java. Universal Journal of Agricultural Research, 11(3), 525–536. https://doi.org/10.13189/ujar.2023.110303
  9. Ivanov, D., & and Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1768450
  10. Kamalahmadi, M., & Parast, M. M. (2017). An assessment of supply chain disruption mitigation strategies. International Journal of Production Economics, 184, 210–230. https://doi.org/https://doi.org/10.1016/j.ijpe.2016.12.011
  11. Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/https://doi.org/10.1016/j.psep.2018.05.009
  12. Malesios, C., Dey, P. K., & Abdelaziz, F. Ben. (2020). Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling. Annals of Operations Research, 294(1), 623–653. https://doi.org/10.1007/s10479-018-3080-z
  13. Merschformann, M., Lamballais, T., de Koster, M. B. M., & Suhl, L. (2019). Decision rules for robotic mobile fulfillment systems. Operations Research Perspectives, 6, 100128. https://doi.org/https://doi.org/10.1016/j.orp.2019.100128
  14. Mishra, D., Gunasekaran, A., Papadopoulos, T., & Dubey, R. (2018). Supply chain performance measures and metrics: a bibliometric study. Benchmarking: An International Journal, 25(3), 932–967. https://doi.org/10.1108/BIJ-08-2017-0224
  15. Neubert, G., Ouzrout, Y., & Bouras, A. (2004). Collaboration and integration through information technologies in supply chains. International Journal of Technology Management, 28(2), 259–273. https://doi.org/10.48550/arXiv.1811.01688
  16. Norita, D., & Munita, R. R. D. S. A. E. N. A. A. (2024). Rice supply chain performance measurement model using supply chain operational reference and data envelopment analysis methods at PT XYZ. Eng. Technol. J, 9(07). https://doi.org/10.47191/etj/v9i07.08
  17. Novar, M. F., Ridwan, A. Y., & Santosa, B. (2018). SCOR and ahp based monitoring dashboard to measure rice sourcing performance at Indonesian bureau of logistics. 2018 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 1–6. https://doi.org/10.1109/TSSA.2018.8708814
  18. Panayides, P., Borch, O. J., & Henk, A. (2018). Measurement challenges of supply chain performance in complex shipping environments. Maritime Business Review, 3(4), 431–448. https://doi.org/10.1108/MABR-07-2018-0021
  19. Pansart, L., Catusse, N., & Cambazard, H. (2018). Exact algorithms for the order picking problem. Computers & Operations Research, 100, 117–127. https://doi.org/https://doi.org/10.1016/j.cor.2018.07.002
  20. Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The evolution of resilience in supply chain management: a retrospective on ensuring supply chain resilience. Journal of Business Logistics, 40(1), 56–65. https://doi.org/10.1111/jbl.12202
  21. Rehman, S. T., Khan, S. A., Kusi-Sarpong, S., & Hassan, S. M. (2018). Supply chain performance measurement and improvement system. Journal of Modelling in Management, 13(3), 522–549. https://doi.org/10.1108/JM2-02-2018-0012
  22. Scholten, K., Sharkey Scott, P., & Fynes, B. (2019). Building routines for non-routine events: supply chain resilience learning mechanisms and their antecedents. Supply Chain Management: An International Journal, 24(3), 430–442. https://doi.org/10.1108/SCM-05-2018-0186
  23. Septya, F., Andriani, Y., Pebrian, S., Yulida, R., & Rosnita, R. (2024). SUPPLY CHAIN ANALYSIS OF RICE MARKETING ACTORS IN DUMAI CITY IN SUPPORTING URBAN FOOD SECURITY. Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, 8(1), 310–321. https://doi.org/10.14710/agrisocionomics.v8i1.19791
  24. Stadtler, H., Stadtler, H., Kilger, C., Kilger, C., Meyr, H., & Meyr, H. (2015). Supply chain management and advanced planning: concepts, models, software, and case studies. Springer. https://doi.org/10.1007/978-3-642-55309-7
  25. Stohler, M., Rebs, T., & Brandenburg, M. (2018). Toward the Integration of Sustainability Metrics into the Supply Chain Operations Reference (SCOR) Model BT - Social and Environmental Dimensions of Organizations and Supply Chains: Tradeoffs and Synergies (M. Brandenburg, G. J. Hahn, & T. Rebs (eds.); pp. 49–60). Springer International Publishing. https://doi.org/10.1007/978-3-319-59587-0_4
  26. Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/https://doi.org/10.1016/j.promfg.2017.09.191
  27. Wieland, A., & Durach, C. F. (2021). Two perspectives on supply chain resilience. In Journal of Business Logistics (Vol. 42, Issue 3, pp. 315–322). Wiley Online Library. https://doi.org/10.1111/jbl.12271
  28. Wijaya, A. (2024). Peningkatan Kinerja dan Perlakuan Risiko Rantai Pasok Beras Cadangan Pangan Pemerintah (Studi Kasus pada Perum BULOG, Kantor Wilayah Jawa Barat). JURNAL PANGAN, 33(3), 97–118. https://doi.org/10.33964/jp.v33i3.881
  29. Xie, Y., Yin, Y., Xue, W., Shi, H., & Chong, D. (2020). Intelligent supply chain performance measurement in Industry 4.0. Systems Research and Behavioral Science, 37(4), 711–718. https://doi.org/10.1002/sres.2712
  30. Yusuf, Y. Y., Gunasekaran, A., Adeleye, E. O., & Sivayoganathan, K. (2004). Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research, 159(2), 379–392. https://doi.org/https://doi.org/10.1016/j.ejor.2003.08.022